A Glimpse of Representation Theory

Semra Öztürk

Orta Doğu Teknik Üniversitesi

TKMD 2016 - ATILIM ÜNİVERSİTESİ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

* We assume groups are finite, modules are of finite length, rings are unital and Artinian throughout for simplicity.

- groups, rings, modules, algebras
- simple (irreducible), indecomposable modules, Schur's Lemma;
- semisimple rings, represention theory of group algebras, Maschke's theorem
- simples and indecomposables for cyclic groups, generalized eigenvectors, Jordan c.f.
- modules for noncyclic abelian p-groups in characteristic p
- modules of constant Jordan type, restricted modules that I defined
- conjectures by Suslin, and Rickard for modules of constant Jordan type
- conjectures by Suslin, and Rickard are true for restricted modules that I defined

- only odd or only even size Jordan blocks, Benson's and my theorems
- my conjecture in the case of only odd or only even size Jordan blocks

Let X be a set, a bijection $f : X \longrightarrow X$ is a one to one and onto, hence invertible function.

Let $Sym(X) = \{ \text{ bijections of } X \}.$

Then $(Sym(X), \circ)$ is a group with the composition operation \circ and

the identity element id_X , $id_X(x) = x$ for all x in X.

This is a very natural way of producing groups.

If $X = \{1, 2, \dots, n\}$, then $Sym(X) = S_n$ has n! elements,

Sym(X) is not commutative for $n \ge 3$, as $f \circ g \neq g \circ f$.

Some group examples are: $(\mathbb{Z}, +), (\mathbb{Z}_n, +), (\mathbb{Z}_p^*, .)$

Let (G, *) and (H, \triangle) be groups, a function $\alpha : G \longrightarrow H$ is a group homomorphism if $\alpha(x * y) = \alpha(x) \triangle \alpha(y)$ for all x, y in G.

Is the set Hom(G, H) of all group homomorphisms from G to H a group?

Yes, whenever H is commutative! (commutative also referred as abelian)

Let G be any group, (A, +) be an abelian group \implies (Hom(G, A), +) is

an abelian group with $(\alpha + \beta)(x) = \alpha(x) + \beta(x)$ for x in G.

If G = A, then there is also composition operation \circ in Hom(A, A). Hence $(Hom(A, A), +, \circ)$ is a ring. Hom(A, A) is denoted by End(A) and referred as the endomorphism ring.

This is a very natural way of producing rings.

Some ring examples are : $(\mathbb{Z}, +..), (\mathbb{Z}_n, +, .), (\mathbb{Z}_p, +, .), (Mat(n)+, .)$

Let R be a ring, let (M, +) be an abelian group M is called a (left) R-module if there is a ring homomorphism $R \to Hom(M, M)$

that is for r, s in R, m, n in $r, s : M \longrightarrow M$ is a group homomorphism for M and $(rs)m = r(sm), 1_Rm = m$.

Every abelian group is a \mathbb{Z} -module; any ring *R* is an *R*-module; if R = F is a field, an *R*-module *M* is called a vector space.

If *M* and *N* are *R*-modules , then $Hom(M, N) = \{\alpha : M \longrightarrow N \mid \alpha(x + y) = \alpha(x) + \alpha(y)\}$ is also *R*-module with $r \cdot \alpha \in Hom(M, N)$ defined as $(r \cdot \alpha)(x) = r\alpha(x)$ for x in *M*.

If *R* is a commutative ring, then the set of *R*-module homomorphisms $Hom_R(M, N) = \{ \alpha \in Hom(M, N) \mid \alpha(rx) = r\alpha(x) \text{ for all } r \in R \}$ is also an *R*-module.

(日) (日) (日) (日) (日) (日) (日) (日)

A ring *R* is an algebra over a field *F* if there is a ring homomorphism $\alpha : F \longrightarrow A$ with $\alpha(F) \subseteq Z(R)$.

Alternatively, a vector space A a field F (of dimension d) is called an algebra (of dimension d) if there is a bilinear multiplication on A.

Some examples are:

- polynomial ring F[x],
- $End_F(M) = Hom_F(M, M)$ where M is a vector space over F,
- the ring of $n \times n$ matrices over F,
- group algebras F[G] where G is a group.

F[G] is a vector space with basis G, and group multiplication induces a multiplication with (cg)(dh) = (cd)(gh) for c, d in F, g, h in G.

Subgroups, Subrings, Submodules

A subset K which is closed under the operations of the set S is a subobject, for instance S is a group, or ring, or R-module.

A map $f : S \longrightarrow T$ between two sets S, T having the same structure is called a homomorphism if it preserves the structure.

Special subojects are kernels of homomorphisms:

Let $f: S \longrightarrow T$ be a homomorphism ;

if S and T are groups, then $\ker(f) = \{s \in S \mid f(s) = id_T\}$,

if S and T are rings, or R-modules, then $\ker(f) = \{s \in S \mid f(s) = 0_T\}$.

If S is a group, or a ring, or an R-module, then $S/\ker(f)$ is of the same structure as S.

Simplicity

Let S be a group , or a ring S is called simple if any homomorphism $f: S \longrightarrow T$ is a monomorphism or |f(S)| = 1.

An R-module M is called simple (or irreducible) if it has no submodules other than 0 and M itself.

 $(\mathbb{Z}_p, +)$ is a simple group and also simple as a \mathbb{Z} -module.

 $(\mathbb{Z}_p, +, \cdot)$ is a simple ring.

If *M* is *R*-module \implies *Rm* is a submodule for $m \in M$.

If M is simple $m \neq 0 \implies Rm = M$ and the map $R \longrightarrow M = Rm$ given by $r \mapsto rm$

has kernel denoted by $Ann_R(m)$, so that $R/Ann_R(m) \cong Rm$.

Schur's Lemma

If M and N are simple R-modules, then every R-module homomorphism between M and N is the zero homomorphism or an isomorphism,

i.e., $(\operatorname{Hom}_R(M, N) \neq 0 \iff M, N \text{ are isomorphic.})$

In particular, if M = N, then $End_R(M) := Hom_R(M, M)$ is a division ring as well; (division ring is a ring such that every non-zero element has inverse)

Consequences:

1) If F is algebraically closed, and R is an F-algebra, M is a simple R-module, then $End_R(M) \cong F$, (that is, every R-homomorphism is multiplication by an element of F.)

2) If R is a commutative algebra over an algebraically closed field F, and M is a simple R-module, then $\dim_F(M) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Proof of 1) and 2)

Proof 1). Let $T \in Hom_R(M, M)$, then T is a linear map. Since F is algebraically closed, T has an eigenvalue $\lambda \in F$. Then $T - \lambda id_M \in Hom_R(M, M)$. Since there is corresponding eigenvector $m \neq 0$ in M, $(T - \lambda id_M)(m) = 0$. So $T - \lambda id_M$ is not an isomorphism. By Schur's Lemma $T - \lambda id_M = 0$, that is $T = \lambda id_M$.

Proof 2). Since *R* is commutative then for any $r \in R$, $\theta_r : M \longrightarrow M$, given by $\theta_r(m) = rm$ is an *R*-module homomorphism as $\theta_r(sm) = rsm = srm$ for any $s \in R$. By (1) $\theta_r = \lambda i d_M$ for some $\lambda \in F$. Let *N* be a 1-dimensional subspace of *M*, and $r \in R$. Since $\theta_r = \lambda i d_M$, $rn = \lambda n \in N$, hence *N* is *R*-module. Since *M* is simple M = N is 1-dimensional.

Counter-example for 1) If F = R reals and $M = \mathbb{C} = R \oplus Ri$, $\phi : \mathbb{C} \longrightarrow \mathbb{C} \phi(z) = iz$ is R-linear, and $\phi^2 = -id_{\mathbb{C}}$ but there is no $r \in R$ with $\phi = r \cdot id_{\mathbb{C}}$ because $r^2 \neq -1$ for all $r \in R$.

Direct Sums, Indecomposability for modules

Let S and T have the same algebraic structure, both are groups, or both rings, both are R-modules, \implies their direct sum $S \oplus T = \{(s, t) \mid s \in S, t \in T\}$ has the same structure with coordinatewise operations.

Let M be R-module , M is called indecomposable if whenever $M \cong N \oplus K$ with submodules K, N we have N or K is 0.

Simplicity and indecomposability is determined also by the structure of the ring $End_R(M)$:

M is simple \iff *f* is isomorphism or *f* = 0 for all *f* \in *End*_{*R*}(*M*).

M is indecomposable \iff *f* is isomorphism or $f^k = 0$ for some $k \ge 1$ (*f* is nilpotent) for all $f \in End_R(M)$.

Examples:

 \mathbb{Z}_n is a \mathbb{Z} -module for any *n*, when n = p is a prime \mathbb{Z}_p is simple

 $\mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq}$ for primes $p \neq q$ but $\mathbb{Z}_p \oplus \mathbb{Z}_p \ncong \mathbb{Z}_{p^2}$

 \mathbb{Z}_p is a subgroup of \mathbb{Z}_{p^2} so \mathbb{Z}_{p^2} is not simple but indecomposable $K \oplus H \cong \mathbb{Z}_{p^2}$ for any H, K.

Indecomposability and Projections

Let M be an R-module, $f \in Hom_R(M, M)$ is called a projection if $f^2 = f$.

If f is a projection, then $id_M - f$ is also a projection; $(id_M - f)^2 = id_M - 2f + f^2 = id_M - f$.

A projection gives a direct sum decomposition with submodules of M because;

 $id_M = f + id_M - f$, and $f(id_M - f) = f - f^2 = 0$ implies

 $M = image(f) \oplus ker(f).$

In fact; if $f_1, \ldots, f_k \in Hom_R(M, M)$ with $f_i^2 = f$, and $f_i f_j = 0$ for $i \neq j$,

 $id_M = f_1 + \cdots + f_k$ and $M \cong f_1(M) \oplus \cdots \oplus f_k(M)$.

Examples : 1) The zero map f = 0 and $f = id_M$ are trivial projections

2) Let $M = \mathbb{R} \oplus \mathbb{R}$ be the \mathbb{R} -vector space of dimension 2, and f(a, b) = (a, 0), then $f(f(a, b)) = f(a, 0) = (a, 0) \Longrightarrow f^2 = f.$

Semisimple rings

A ring *R* is called semisimple if every *R*-module *M* can be written as $M \cong M_1 \oplus \cdots \oplus M_k$ where M_i is simple *R*-modules.

Example: Any field F = R is semisimple, every vectorspace $M \cong F^k$ for some k.

Non-example : $R = \mathbb{Z}$ is not semisimple \mathbb{Z}_{p^2} is indecomposable but not isomorphic to direct sum of simples.

So, if there are indecomposable *R*-modules \implies *R* is not semisimple

R is not semisimple $\implies M \cong M_1 \oplus \cdots \oplus M_k$ where M_i is indecomposable

Observation: Let $0 \neq v \in M$, $0 \neq Rm$ is a submodule of M.

 $M \text{ simple} \implies M = Rm \text{ and } R/Ann_R(m) \cong Rm \text{ as } R$ -modules, and $Ann_R(m)$ is a maximal left ideal

R is not semisimple if $J(R) \neq 0$ where $J(R) = \cap \{Ann_R(M) : M \text{ simple}\}$.

R = F, M is a vector space

M simple F-module $\Longrightarrow M \cong F$

 $M \cong F^m$ and $N \cong F^n$ then $Hom_F(M, N) \leftrightarrow Mat_{n \times m}(F)$

 $f \in Hom_F(M, N)$, $\iff f(cv) = cf(v)$ and f(v + w) = f(v) + f(w)

 $f: M \longrightarrow N$

M has a basis, say , v_1, \ldots, v_m , every element of *M* is of the form $c_1v_1 + \cdots + c + mv_m$ *N* has a basis, say , u_1, \ldots, u_n , every element of *N* is of the form $d_1u_1 + \cdots + d_nu_n$ so knowing *f* means knowing $f(v_i) = d_{i1}u_1 + \cdots + d_{in}u_n$, $i = 1, \ldots, m$

so
$$f \leftrightarrow (d_{ij}) = \begin{pmatrix} & d_{ij} \end{pmatrix}$$

Representation Theory

{abstract algebraic structures(groups, associativealgebras, posets)} \Longrightarrow

{concrete objects in linear algebra, matrices }

Example :

 $\{finite groups\} \implies \{associate group elements with matrices\}$

Let G be group, a representation of G of dimension n over F is a group homomorphism

 $\theta: G \longrightarrow GL_n(F)$ so that

 $\theta(g)$ is matrix A and $A^{order(g)} = I$.

Representation Theory of Finite Groups

The group homomorphism

 $\theta: G \longrightarrow GL_n(F^n)$ can be extended linearly to a ring homorphism

 $\Theta: F[G] \longrightarrow End_F(F^n) \cong Mat_{n \times n}(F)$

Hence F^n is an F[G]-module via Θ .

Representation theory of F[G] becomes F[G]-module theory.

Depending on the characteric of the field, F[G] is semisimple or non-semisimple.

These two cases are totally different.

For instance, if G is abelian, non-cyclic p-group, all indecomposable (simple) $\mathbb{C}G$ -modules are known, but if characteristic of F is p, classification for indecomposables exists only for $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorems on the number of simples, indecomposables

- If A is a finite dimensional F-algebra, and F is algebraically closed, then there are finitely many simple A-modules up to isomorphism. If their degrees are d_i , then $\sum_i d_i^2 = \dim_F(A) - \dim_F J(A)$ where J(A) is the largest nilpotent left ideal in A.

- If A = F[G] where G is a p-group and char(F) = p, then $dim_F(A) - dim_F J(A) = 1$, so that there is only one irreducible module which is 1-dimensional.

-(Higman) Let F be a field of characteristic p. There are finitely many indecomposable F[G]-modules if and only if a Sylow subgroup of G is cyclic.

- If G is cyclic p-group of order p^n , F is a field of characteristic p, then there p^n non-isomorphic indecomposable F[G]-modules.

- (Schur) If G is abelian and F is algebraically closed, M simple F[G]-module, then $\dim_F(M) = 1$ and $Hom)R(M, M) \cong F$.

Observation

Note that $(\sum_{g \in G} g)h = h(\sum_{g \in G} g) = \sum_{g \in G} g$ for any $h \in G$ then $(\sum_{g \in G} g)F[G] = (\sum_{g \in G} g)F \cong F$ is a submodule of F[G] fixed by G and $(\sum_{g \in G} g)(\sum_{g \in G} g) = |G|(\sum_{g \in G} g).$

If |G| has an inverse in F, then $r_G = \frac{1}{|G|} \sum_{g \in G} g$ is a projection in F[G] because;

$$r_G^2 = \left(\frac{1}{|G|} \Sigma_{g \in G} g\right) \left(\frac{1}{|G|} \Sigma_{g \in G} g\right) = \left(\frac{1}{|G|}\right)^2 \left(\Sigma_{g \in G} g\right) \left(\Sigma_{g \in G} g\right) = \left(\frac{1}{|G|}\right)^2 |G| \left(\Sigma_{g \in G} g\right) = r_G.$$

In particular, $F[G] \cong r_G F[G] \oplus (1 - r_G) F[G]$ so that F[G] is not indecomposable.

If |G|=0 in F, then $(\sum_{g\in G} g)$ is a nilpotent element in F[G], then F[G] is not semisimple.

|G| has an inverse in $F \iff char(F)$ does not divide |G|

Maschke's Theorem

Maschke's Theorem Suppose *char*(F) does not divide |G| and M be anf F[G]-module. If N is a submodule of M, then there is a submodule W such that $M = N \oplus W$.

Proof: Note that *M* is a vector space over *F* and *F* is semisimple, so there is a subspace *V* of *M* such that $M = N \oplus V$. We want to obtain a submodule though. Let $pr_V : M \longrightarrow V$ be the projection onto *V*, $pr_V(n, v) = v$. Using pr_V define an F[G]-homomorphism $f : M \longrightarrow M$ by $f(m) = \frac{1}{|G|} \sum_{g \in G} g^{-1} pr_V(gm)$. This *f* is a projection as well, $f^2 = f$, and f(M) = V, so that $M = V \oplus \ker(f)$.

By this theorem every F[G]-module is a direct sum of irreducibles, that is, F[G] is semisimple.

If $char(F) = 0 \implies F[G]$ is semisimple.

 $\mathbb{R}[G]$, $\mathbb{C}[G]$ are semisimple.

Restricting *M* to a subgroup *H*, $M \downarrow_H$ Chouinard's Theorem and Dade's Lemma, modular case

Let *M* be an F[G]-module and $H \leq Units(F[G])$ be a subgroup.

Then F[H] is a subalgebra of F[G], and M is an F[H]-module denoted by $M\downarrow_{H}$.

An elementary abelian *p*-group *E* of order p^n is of the form $E = \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (*n*-copies).

Chouinard's Theorem* (1976) Let G be a finite p-group, an F[G]-module M is free if and only if $M \downarrow_E$ is free for every elementary abelian p-subgroup E of G.

*To avoid some definitions we state Chouinard's theorem in a special case.

Dade's Lemma (1978) An F[E]-module M is free if and only if $M \downarrow_{(1+x)}$ is free for all x in $J(E) \setminus J(E)^2$.

PART 2

Examples of Representations of Cyclic Group

Let $G = \langle g \rangle \cong \mathbb{Z}_k$, and F be any field. An F[G]-module/representation of dimension n is given by a homomorphism $\phi : G \longrightarrow GL_n(F) = Aut(F^n)$.

 ϕ is determined by a matrix $A = \phi(g)$ with $A^k = I_n$, that is, $M = F^n$

 $g: M \longrightarrow M$ is linear and $[g]_{\mathcal{B}} = A$ where \mathcal{B} is a basis for G.

- M = F is trivial F[G]-module, A = [c] with $c^k = 1$ (F must have k-th root of 1.)

- -M = F[G] is the regular F[G]-module.
- -M = I is a left ideal of F[G], is an F[G]-module.

\mathbb{CZ}_5 , semisimple case, char $(\mathbb{C}) = \mathbf{0} \neq \mathbf{5}$

Suppose $F = \mathbb{C}$, $G = \langle g \rangle \cong \mathbb{Z}_5$ and M is a simple $\mathbb{C}[G]$ -module.

By Schur's Lemma $\dim_{\mathbb{C}}(M) = 1$ and $[g] = [\omega]$, where $\omega^5 = 1$, so $gm = \omega m$ for all $m \in M$.

There are 5 possibilities for ω , so there are five simple $\mathbb{C}G$ -modules all of dimension 1.

Problem: Write the regular module $\mathbb{C}[G]$ as a sum of simple modules. Let $A = [g]_B$ where $\mathcal{B} = \{1, g, \dots, g^{k-1}\}$ is a basis for $\mathbb{C}[G]$. Then $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ and

the characteristic polynomial of A is $det(xI - A) = x^5 - 1 = (x - \omega_1)(x - \omega_2)(x - \omega_3)(x - \omega_4)(x - 1) \text{ where } \omega_i^5 = 1.$

There are 5 distinct roots, so A is diagonalizable. A is similar to

$$D = \begin{bmatrix} \omega_1 & 0 & 0 & 0 & 0 \\ 0 & \omega_2 & 0 & 0 & 0 \\ 0 & 0 & \omega_3 & 0 & 0 \\ 0 & 0 & 0 & \omega_4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 therefore

 $\mathbb{CZ}_5 = M_1 \oplus \cdots \oplus M_5$, such that M_i is simple and $rm_i = \omega_i m_i$ for $m_i \in M_i$.

$F\mathbb{Z}_5$, modular case, char(F) = 5

Let $G = \langle g \rangle \cong \mathbb{Z}_5$. Let M be a simple F[G]-module. Assume F is algebraically closed.

By Schur's Lemma $\dim_F(M) = 1$ and $[g] = [\omega]$, with $\omega^5 = 1$. Since F is a field, $0 = \omega^5 - 1 = (\omega - 1)^5 \mod (5)$ implies $\omega = 1 \mod (5)$. Therefore M = F and gm = m for all $m \in M$. So there is only one simple F[G]-module, M = F, it has trivial g-action.

Problem: Write the regular module FG as a sum of indecomposable modules.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$
 The characteristic polynomial of

 $A = \det(xI - A) = x^5 - 1 = (x - 1)^5$, then 1 is the only eigenvalue, it has multiplicity 5. However, since rank(A - I) = rank(R) = 4, the eigenspace of 1 is 1-dimensional, so that A is not diagonalizable;

$$A-I = \begin{bmatrix} -1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix} = R \ .$$

Generalized Eigenvectors

Definition: A vector v_m is called a generalized eigenvector of rank m of a matrix A corresponding to the eigenvalue λ , if

$$(A - \lambda I)^m v_m = 0, \qquad (A - \lambda I)^{m-1} v_m \neq 0.$$

The set $\{v_m, (A - \lambda I)v_m, (A - \lambda I)^2v_m, (A - \lambda I)^3v_m, \dots, (A - \lambda I)^{m-1}v_m\}$ is linearly independent and

$$v_1 = (A - \lambda I)^{m-1} v_m$$
, then $(A - \lambda I) v_1 = 0$, so $Av_1 = \lambda v_1$

$$v_2 = (A - \lambda I)^{m-2} v_m$$
, then $v_1 = (A - \lambda I) v_2$, so $Av_2 = v_1 + \lambda v_2$
:

 $v_{m-1} = (A - \lambda I)v_m$, then $Av_m = v_{m-1} + \lambda v_m$.

The Jordan block of A corresponding to the eigenvalue λ written with respect to this basis is the form

(日) (同) (三) (三) (三) (○) (○)

 $\begin{bmatrix} \lambda & 0 & 0 & 0 & 0 \\ 1 & \lambda & 0 & 0 & 0 \\ 0 & 1 & \lambda & 0 & 0 \\ 0 & 0 & 1 & \lambda & 0 \\ 0 & 0 & 0 & 1 & \lambda \end{bmatrix}$

For $F\mathbb{Z}_5$

Let N = A - I, let's compute powers of N:

$$N = \begin{bmatrix} -1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}, N^2 = \begin{bmatrix} 1 & 0 & 0 & 1 & -2 \\ -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix},$$
$$N^3 = \begin{bmatrix} -1 & 0 & 1 & -3 & 3 \\ 3 & -1 & 0 & 1 & -3 \\ -3 & 3 & -1 & 0 & 1 \\ 1 & -3 & 3 & -1 & 0 \\ 0 & 1 & -3 & 3 & -1 \end{bmatrix}, N^4 = \begin{bmatrix} 1 & 1 & -4 & 6 & -4 \\ -4 & 1 & 1 & -4 & 6 \\ -4 & 1 & 1 & -4 & 6 \\ -4 & 1 & 1 & -4 & 6 \\ -4 & 6 & -4 & 1 & 1 \\ 1 & -4 & 6 & -4 & 1 \end{bmatrix},$$
$$N^5 = \begin{bmatrix} 0 & -5 & 10 & -10 & 5 \\ 5 & 0 & -5 & 10 & -10 \\ -10 & 5 & 0 & -5 & 10 \\ 10 & -10 & 5 & 0 & -5 \\ -5 & 10 & -10 & 5 & 0 \end{bmatrix}, N^6 = \begin{bmatrix} -5 & 15 & -20 & 15 & -5 \\ -5 & -5 & 15 & -20 & 15 \\ 15 & -5 & -5 & 15 & -20 \\ -20 & 15 & -5 & -5 & 15 \\ 15 & -20 & 15 & -5 & -5 \end{bmatrix},$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

$F\mathbb{Z}_5$, modular case char(F) = 5

In our example above, $(A - I)^5 = A^5 - I^5 = I - I = 0$, but do not know $(A - I)^4 \neq 0$.

 $-1 = 4 \mod (5), -2 = 3 \mod (5),$ etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$F\mathbb{Z}_5$, modular case , char(F) = 5

In our example above, $(A - I)^5 = A^5 - I^5 = I - I = 0$, and $(A - I)^4 \neq 0$.

Since $(A - I)^4 \neq 0$, there is a non-zero vector v_5 with $(A - I)^4 v_5 \neq 0$. Let

 $\begin{aligned} v_1 &= (A-I)^4 v_5, \\ v_2 &= (A-I)^3 v_5, \\ v_3 &= (A-I)^2 v_5, \\ v_4 &= (A-I) v_5. \end{aligned}$

Then $(A - I)v_1 = 0$, so that $Av_1 = v_1$, v_1 is an eigenvector and v_2 , v_3 , v_4 , v_5 are generalized eigenvectors for A corresponding to 1.

The set $\mathcal{B} = \{v_5, v_4, v_3, v_2, v_1\}$ is linearly independent and $v_4 = (A - I)v_5 = Av_5 - v_5$ so that $Av_5 = v_4 + v_5$ $v_3 = (A - I)^2v_5 = (A - I)v_4 = Av_4 - v_4$ so that $Av_4 = v_3 + v_4$ $v_2 = (A - I)^3v_5 = (A - I)v_3 = Av_3 - v_3$ so that $Av_3 = v_2 + v_3$ $v_1 = (A - I)^4v_5 = (A - I)v_2 = Av_2 - v_2$ so that $Av_2 = v_1 + v_2$

Rewriting the matrix A using the basis \mathcal{B} we obtain the Jordan form J of A,

$$J = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim A. \text{ Therefore } F\mathbb{Z}_5 \text{ is indecomposable.}$$

$F\mathbb{Z}_5$, modular case, shifted basis

We obtained the matrix A of the generator g using the basis $\{1, g, g^2, \ldots, g^4\}$ for $F\mathbb{Z}_5$.

If we used the basis $\{1,g-1,(g-1)^2,\ldots,(g-1)^4\}$ for $F\mathbb{Z}_5$, then

[g - 1] =	٢0	0	0	0	ך0		٢1	0	0	0	ך0
		0				and adding I gives $[g] =$	1	1	0	0	0
	0	1	0	0	0		0	1	1	0	0
	0	0	1	0	0		0	0	1	1	0
	Lo	0	0	1	0		Lo	0	0	1	1

which is already in the Jordan form.

A nilpotent matrix with 5th power zero can be the matrix of [g-1] action on an $F\mathbb{Z}_5$ -module M.

M is indecomposable $F\mathbb{Z}_5$ -module if there is only one Jordan block in the Jordan form of [g-1]. All other possible Jordan blocks are

 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 \end{bmatrix}, \text{ which correspond to indecomposable}$ modules V_4, V_3, V_2, V_1 respectively, $\dim(V_i) = i$. Vi's are submodules (ideals of) F[G]. Note also that F[G] is indecomposable and contains all the indecomposables. **Modular Case, Indecomposables for a Cyclic** *p*-group, Let $Z_{p^t} = \langle g \rangle$. All the indecomposables are submodules (ideals) of *F*[*G*].

There is a unique maximal ideal J(F[G]) of dimension $p^t - 1$, with $(J(F[G]))^i$ of dimension $p^t - i$.

Using the shifted basis $\{(g-1)^{p^t-1}, (g-1)^{p^t-2}, \dots, g-1, 1\}$ for F[G] we can write explicitly $(J(F[G]))^i$.

Let $V_i = (J(F[G]))^i = Span\{(g-1)^{p^t-1}, \dots, (g-1)^{p^t-i}\}$ for $i = 1, 2, \dots, p^{t-1}$.

The action of g - 1 on V_i is represented by the $i \times i$ nilpotent Jordan matrix [i].

 $V_1 = k, V_2, \dots V_{p^t-1}, \dots V_{p^t} = F[\langle g \rangle]$ is the set of all indecomposable $F[\langle g \rangle]$ -modules, hence a $F[\langle g \rangle]$ -module M of dimension d is of the form

$$M \cong V_1^{b_1} \oplus \cdots \oplus V_{p^t}^{b_{p^t}}$$
 where $\sum_{i=1}^{p^t} ib_i = d$.

M is completely determined by $\mathbf{b} = (b_1, \dots, b_{p^t})$ where b_i -many Jordan blocks [*i*].

b is called the p^t -Jordan type of M also of X = [g - 1].

It is easy to compute b_i , namely, $b_i = X^{i-1} - 2X^i + X^{i+1}$.

Key observation

The decomposition of M in terms of indecomposable $k[\mathbf{Z}_{p^t}]$ -modules completely determines the decomposition of the restriction $M \downarrow_{\mathbf{Z}_{p^s}}$ of M for the subgroups $\mathbf{Z}_{p^s} = \langle g^{p^{t-s}} \rangle$ contained in $\mathbf{Z}_{p^t} = \langle g \rangle$ for $s \leq t$.

Hence, if <u>b</u> is p^t -Jordan type of M as a $k[\langle g \rangle]$ -module and <u>a</u> is the p^s -Jordan type of M as a $k[\langle g^{p^{t-s}} \rangle]$ -module, then

$$a_{i} = p^{s} b_{ip^{s}} + \sum_{j=1}^{p^{s}-1} j \big[b_{(i-1)p^{s}+j} + b_{(i+1)p^{s}-j} \big].$$

In this case, we say <u>a</u> is a p^{t-s} -restricted p^s -Jordan type and write $\underline{a}=\underline{b}\downarrow_{t-s}$. The coefficients of b_j 's appearing in a_i form a nice pattern. For p = 5, t = 2, s = 1;

$$a_1 = b_1 + 2b_2 + 3b_3 + 4b_4 + 5b_5 + 4b_6 + 3b_7 + 2b_8 + b_9,$$

$$\begin{aligned} a_2 &= b_6 + 2b_7 + 3b_8 + 4b_9 + 5b_{10} + 4b_{11} + 3b_{12} + 2b_{13} + b_{14}, \\ a_3 &= b_{11} + 2b_{12} + 3b_{13} + 4b_{14} + 5b_{15} + 4b_{16} + 3b_{17} + 2b_{18} + b_{19}, \\ a_4 &= b_{16} + 2b_{17} + 3b_{18} + 4b_{19} + 5b_{20} + 4b_{21} + 3b_{22} + 2b_{23} + b_{24}, \\ a_5 &= b_{21} + 2b_{22} + 3b_{23} + 4b_{24} + 5b_{25}. \end{aligned}$$

PART 3 Representations of $\mathbb{Z}_{p^t} \times \mathbb{Z}_{p^s}$, modular case

Let $G = \langle g, h : g^{p^t} = 1 = h^{p^s}, gh = hg \rangle \cong \mathbb{Z}_{p^t} \times \mathbb{Z}_{p^s}$, and k be of characteristic p.

Since $\mathbb{Z}_{p^t} \times \mathbb{Z}_{p^s} \ge \mathbb{Z}_p \times \mathbb{Z}_p$, Higman's Theorem implies that there are **infinitely many** indecomposable k[G]-modules.

There is **no classification** for indecomposable modules over $k[\mathbb{Z}_p \times \mathbb{Z}_p]$ except for p = 2.

A k[G]-module/representation of dimension d is given by a homomorphism $\phi: G \longrightarrow GL_d(k) = Aut(k^d)$.

 ϕ is determined by $\phi(g)$ and $\phi(h)$.

Let $A = \phi(g)$, $B = \phi(h)$.

Then $A^{p^t} = I$, $B^{p^s} = I$ and AB = BA.

The characteristic of k is p, then $(A - I)^{p^t} = A^{p^t} - I = I - I = 0$ similarly for B.

To make computations easier, we work with X = A - I, and Y = B - I corresponding to g - 1 and h - 1 respectively.

Visualizing modules for $\mathbb{Z}_{p^t} \times \mathbb{Z}_{p^s}$, modular case

A way of visualizing an $k[\mathbf{Z}_{p^t} \times \mathbf{Z}_{p^s}]$ -module *M*:

southwest arrow denotes multiplication by g - 1, and southeast arrow denotes multiplication by h-1, g and h are the group generators.

For example let $G \cong \mathbb{Z}_4 \times \mathbb{Z}_4$,

Constant Jordan Type Modules

Let *E* be an elementary abelian group of order p^r with generators $e_1, \ldots e_r$.

Let $\alpha = (\alpha_1, \ldots, \alpha_r) \in k^r$ not all $\alpha_i = 0$, define $x_\alpha = \alpha_1(e_1 - 1) + \ldots + \alpha_r(e_r - 1)$.

In characteristic p,

$$\begin{split} & x_{\alpha}^{p} = \alpha_{1}^{p}(e_{1}-1)^{p} + \ldots + \alpha_{r}^{p}(e_{r}-1)^{p} = 0 \text{ because } (e_{i}-1)^{p} = e_{i}^{p} - 1 = 1 - 1 = 0. \\ & x_{\alpha} \in J(k[E]), \qquad \mathbb{Z}_{p} \cong \langle 1 + x_{\alpha} \rangle \leq \textit{Units}(k[E]). \end{split}$$

An k[E]-module is said to be of constant Jordan type if $M \downarrow_{\langle 1+x_{\alpha} \rangle}$ has the same decomposition for all α in $k^r \setminus 0$.

That is, the Jordan canonical form of the matrix of x_{α} is the same for all α in $k^r \setminus \mathbf{0}$.

These modules are introduced by Carlson-Friedlander-Pevtsova in 2008

Let A be an abelian p-group, that is, $A \cong \mathbb{Z}_{p^{t_1}} \times \ldots \times \mathbb{Z}_{p^{t_m}}$.

I generalized the above definition to constant p^{t} -Jordan type for k[A]-modules in 2011.

A k[A]-module is said to be of constant p^t -Jordan type if the p^t -Jordan type of M is the same for all subgroups Z_{p^t} of the unit group of k[A] for which k[A] is a free $k[Z_{p^t}]$ -module. Two examples of constant Jordan type modules $Z_5 \times Z_5$

The $k[\mathbf{Z}_5 \times \mathbf{Z}_5]$ -modules *M* and *M'*, given in Figure 5 and Figure 6 respectively, both are constant Jordan type modules.

The Jordan types of M and M' are

(1, 1, 3, 0, 0) and (1, 2, 1, 1, 0), respectively.

イロト 不得 トイヨト イヨト

Conjectures by Suslin and Rickard on Jordan types

There are more conjectures than results on Jordan types of k[E]-modules of constant Jordan type as it is a difficult problem even for $E = Z_3 \times Z_3$.

Suslin's Conjecture. If *M* is a $k[Z_p \times Z_p]$ -module of constant Jordan type having no Jordan blocks of sizes i - 1, and i + 1, then there is no Jordan block of size i, for 2 < i < p, and p > 3.

Rickard's Conjecture. If M is a k[E]-module of constant Jordan type having no Jordan block of size i then the total number of Jordan blocks of size at least i is divisible by p.

Benson verified Rickard's conjecture for the special case i = 1.

Key observation

The decomposition of M in terms of indecomposable $k[\mathbf{Z}_{p^t}]$ -modules completely determines the decomposition of the restriction $M \downarrow_{\mathbf{Z}_{p^s}}$ of M.

For instance , $\mathbb{Z}_5\cong \langle g^5\rangle ~\leq~ \langle g\rangle\cong \mathbb{Z}_{25}$,

if \underline{b} is 5²-Jordan type of M as a $k[\langle g \rangle]$ -module and

<u>a</u> is the 5-Jordan type of $M \downarrow_{\langle g^5 \rangle}$.

$$a_i = 5b_{i5} + \sum_{j=1}^4 j [b_{(i-1)5+j} + b_{(i+1)5-j}].$$

Recall that the coefficients of b_i 's appearing in a_i form a nice pattern. ;

$$\begin{aligned} a_1 &= b_1 + 2b_2 + 3b_3 + 4b_4 + 5b_5 + 4b_6 + 3b_7 + 2b_8 + b_9, \\ a_2 &= b_6 + 2b_7 + 3b_8 + 4b_9 + 5b_{10} + 4b_{11} + 3b_{12} + 2b_{13} + b_{14}, \\ a_3 &= b_{11} + 2b_{12} + 3b_{13} + 4b_{14} + 5b_{15} + 4b_{16} + 3b_{17} + 2b_{18} + b_{19} \\ a_4 &= b_{16} + 2b_{17} + 3b_{18} + 4b_{19} + 5b_{20} + 4b_{21} + 3b_{22} + 2b_{23} + b_{24} \\ a_5 &= b_{21} + 2b_{22} + 3b_{23} + 4b_{24} + 5b_{25}. \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日) (日)

My conjecture generalizing Suslin and Rickard's

Conjecture B. Suppose that M is a k[A]-module of constant p^t -Jordan type <u>a</u>.

If $a_i = a_l = 0$, then p^s divides the sum $\sum_{i=i}^{l} a_j$, for $1 \le i < l \le p^t$.

When A = E, this is Rickard's Conjecture and Modified Suslin's Conjecture.

Conjecture B is **true for restricted** k[A]-modules by my Theorem A (2014).

Theorem A. Suppose that A is an abelian p-group, M is a p^s -restricted k[A]-module, and \underline{a} is the p^t -Jordan type of M at a p^s -restricted p^t -point x of A with p > 3. If $a_i = a_l = 0$, then p^s divides the sum $\sum_{i=1}^{l} a_i$, for $1 \le i < l \le p^t$.

Restricted Modules

If G is an abelian p-group of order divisible by p^t and A is a proper subgroup of index at most p^{t-s} for $s \le t$, then $\langle g^{p^{t-s}} \rangle \cong \mathbb{Z}_{p^s}$ is a subgroup of A for $g \in G$ of order p^t .

Hence there will be p^{t-s} -restricted p^s -Jordan types. This motivated the definition of restricted modules.

A k[A]-module M is called a p^{t-s} -restricted module if there is such a G and a k[G]-module N isomorphic to M as a k[A]-module.

So, a k[A]-module M is a p^{t-s} -restricted module of constant if M is restricted module and it is of constant Jordan type.

(日) (日) (日) (日) (日) (日) (日) (日)

Example of a restricted module for $Z_2 \times Z_4$

Figure 5 represents a 10-dimensional $k[\mathbf{Z}_2 \times \mathbf{Z}_4]$ -module. Its restriction to $\mathbf{Z}_2 \times \mathbf{Z}_2$ is a restricted $k[\mathbf{Z}_2 \times \mathbf{Z}_2]$ module is a **direct sum the modules in Figure 2 and Figure 3**.

Only odd/only even Jordan blocks case by Benson

Theorem (Benson, 2010). There cannot be a k[E]-module of constant Jordan type $\underline{a}=(0, a_2, \ldots, a_{p-2}, 0, *)$ where $a_i = 0$ for all $i \in \{2, \ldots, p-2\}$ except for one *i* for which $a_i = 1$.

Theorem (Benson, 2011) Suppose that a k[E]-module M has constant Jordan type with only distinct odd sizes or I only of distinct even sizes. Then the Jordan type of M is of the form $\underline{a}=(1,0,\ldots,0,*)$ or $\underline{a}=(0,\ldots,0,1,*)$, or $\sum_{i=1}^{p} a_i \geq 4$.

Theorem (Benson, 2013) Suppose that a k[E]-module M has constant Jordan type $(a_1, \ldots, a_t, 0, \ldots, 0, *)$ with $\sum_{i=1}^{t} a_i \leq \min(r-1, p-2)$, then Jordan type of M is of the form $\underline{a} = (1, 1, 1, 1, a_t = 1, 0, \ldots, 0, *)$ where r is the E is of rank r.

Corollary. Suppose that a k[E]-module M has constant Jordan type and E is of rank r, p > r, with Jordan type $(a_1, 1, 0, \ldots, 0, *)$, then then $a_1 \ge r - 2$.

My only odd/only even Jordan bloks results and a conjecture implied by it

Theorem C. Suppose that M is a restricted k[A]-module of constant p^t -Jordan type having only odd size or of only even size. Then the Jordan type of M is of the form

 $(p^{s}t_{1} + r, 0, p^{s}t_{3}, 0, p^{s}t_{5}, 0, \dots, 0, p^{s}t_{p^{t}})$ for some integer $r \ge 0$ or $(0, p^{s}t_{2}, 0, p^{s}t_{4}, 0, \dots, 0, a, *)$ for integers $t_{i}, a, * \ge 0$ with $p^{s} | a + *$.

Theorem D. Suppose that *M* is a restricted k[A]-module of constant p^t -Jordan type. Then Jordan type is of the form (a, b, 0, ...), then $a \ge p - b$. In particular, if $p - 1 \ge r - s$, then $a \ge r - s$ for $s \ge r$; if $b \ne 0$, then $a \ne 0$.

By **removing the hypothesis "restricted"** from our theorems we can state many conjectures, such an example is in the next page.

A conjecture

Conjecture E. Suppose that M is a k[A]-module of constant p^t -Jordan type with only odd size or of only even sizes. Then the Jordan type of M is of the form

 $(p^{s}t_{1} + r, 0, p^{s}t_{3}, 0, p^{s}t_{5}, 0, \dots, 0, p^{s}t_{p^{t}})$ for some integer $r \geq 0$ or $(0, p^{s}t_{2}, 0, p^{s}t_{4}, 0, \dots, 0, a, *)$ for integers $t_{i}, a, * \geq 0$ with $p^{s} | a + *$.

Conjecture E is true for restricted k[A]-modules of constant p^t -Jordan type.

References

- D. Benson, Modules of constant Jordan and a conjecture of Rickard, J. Algebra, 393, 2014, 343-349
 - D. Benson , Modules of Constant Jordan Type with Small Non-Projective Part, Algebr. Represent. Theory, 16, **2013** , no. 1, 29–33.
 - D. Benson, *Modules of constant Jordan type with one non-projective block* Algebr. Represent. Theory 13,**2010**, 315-318.
 - S.Öztürk Kaptanoğlu, *Restricted modules and conjectures for modules of constant Jordan type*, Algebr. Represent. Theor , 17, **2014** , 14371455.
- S.Öztürk Kaptanoğlu, *p-power points and modules of constant p-power Jordan type*, Communications in Algebra, 39, **2011**, 3781-3800.
- J. F. Carlson, E. Friedlander, A. Suslin, Modules for $\mathbf{Z}/p\times\mathbf{Z}/p,$ Comment. Math. Helv., 86, 2011, 609–657.
- J. F. Carlson, E. Friedlander, J. Pevtsova, *Modules of constant Jordan type*, J. Reine Angew. Math. 614, **2008**, 191–234.