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Outline
* We assume groups are finite, modules are of finite length, rings are unital and
Artinian throughout for simplicity.

– groups, rings, modules, algebras

– simple (irreducible), indecomposable modules, Schur’s Lemma;

– semisimple rings, represention theory of group algebras, Maschke’s theorem

– simples and indecomposables for cyclic groups, generalized eigenvectors, Jordan c.f.

– modules for noncyclic abelian p-groups in characteristic p

– modules of constant Jordan type, restricted modules that I defined

– conjectures by Suslin, and Rickard for modules of constant Jordan type

– conjectures by Suslin, and Rickard are true for restricted modules that I defined

– only odd or only even size Jordan blocks, Benson’s and my theorems

– my conjecture in the case of only odd or only even size Jordan blocks



Groups, Rings, Modules, Algebras

Let X be a set, a bijection f : X −→ X is a a one to one and onto, hence invertible
function.

Let Sym(X ) = { bijections of X}.

Then (Sym(X ), ◦) is a group with the composition operation ◦ and

the identity element idX , idX (x) = x for all x in X .

This is a very natural way of producing groups.

If X = {1, 2, . . . , n}, then Sym(X ) = Sn has n! elements,

Sym(X ) is not commutative for n ≥ 3, as f ◦ g 6= g ◦ f .

Some group examples are: (Z,+), (Zn,+), (Z∗p , .)



Groups, Rings, Modules, Algebras

Let (G , ∗) and (H,4) be groups, a function α : G −→ H is a group homomorphism if
α(x ∗ y) = α(x)4α(y) for all x , y in G .

Is the set Hom(G ,H) of all group homomorphisms from G to H a group?

Yes, whenever H is commutative! (commutative also referred as abelian)

Let G be any group, (A,+) be an abelian group =⇒ (Hom(G ,A),+) is

an abelian group with (α+ β)(x) = α(x) + β(x) for x in G .

If G = A, then there is also composition operation ◦ in Hom(A,A) . Hence
(Hom(A,A),+, ◦) is a ring. Hom(A,A) is denoted by End(A) and referred as the
endomorphism ring.

This is a very natural way of producing rings.

Some ring examples are : (Z,+.·), (Zn,+, ·), (Zp ,+, ·), (Mat(n)+, ·)



Groups, Rings, Modules, Algebras
Let R be a ring, let (M,+) be an abelian group M is called a (left) R-module if there
is a ring homomorphism R → Hom(M,M)

that is for r , s in R , m, n in r , s : M −→ M is a group homomorphism for M and
(rs)m = r(sm), 1R m = m.

Every abelian group is a Z-module; any ring R is an R-module; if R = F is a field, an
R-module M is called a vector space.

If M and N are R-modules , then
Hom(M,N) = {α : M −→ N | α(x + y) = α(x) + α(y)} is also R-module with
r · α ∈ Hom(M,N) defined as (r · α)(x) = rα(x) for x in M.

If R is a commutative ring, then the set of R-module homomorphisms
HomR (M,N) = {α ∈ Hom(M,N) | α(rx) = rα(x) for all r ∈ R} is also an R-module.



Groups, Rings, Modules, Algebras

A ring R is an algebra over a field F if there is a ring homomorphism α : F −→ A with
α(F ) ⊆ Z(R).

Alternatively, a vector space A a field F (of dimension d) is called an algebra (of
dimension d) if there is a bilinear multiplication on A.

Some examples are:

– polynomial ring F [x],

– EndF (M) = HomF (M,M) where M is a vector space over F ,

– the ring of n × n matrices over F ,

– group algebras F [G ] where G is a group.

F [G ] is a vector space with basis G , and group multiplication induces a multiplication
with (cg)(dh) = (cd)(gh) for c, d in F , g , h in G .



Subgroups, Subrings, Submodules
A subset K which is closed under the operations of the set S is a subobject, for
instance S is a group, or ring, or R-module.

A map f : S −→ T between two sets S, T having the same structure is called a
homomorphism if it preserves the structure.

Special subojects are kernels of homomorphisms:

Let f : S −→ T be a homomorphism ;

if S and T are groups, then ker(f ) = {s ∈ S | f (s) = idT },

if S and T are rings, or R-modules, then ker(f ) = {s ∈ S | f (s) = 0T }.

If S is a group, or a ring, or an R-module, then S/ ker(f ) is of the same structure as S .



Simplicity
Let S be a group , or a ring S is called simple if any homomorphism f : S −→ T is a
monomorphism or |f (S)| = 1.

An R-module M is called simple ( or irreducible) if it has no submodules other than 0
and M itself.

(Zp ,+) is a simple group and also simple as a Z-module.

(Zp ,+, ·) is a simple ring.

If M is R-module =⇒ Rm is a submodule for m ∈ M.

If M is simple m 6= 0 =⇒ Rm = M and the map R −→ M = Rm given by r 7→ rm

has kernel denoted by AnnR (m), so that R/AnnR (m) ∼= Rm.



Schur’s Lemma

If M and N are simple R-modules, then every R-module homomorphism between M
and N is the zero homomorphism or an isomorphism,

i.e.,
(
HomR (M,N) 6= 0 ⇐⇒ M, N are isomorphic.

)
In particular, if M = N, then EndR (M) := HomR (M,M) is a division ring as well;
(division ring is a ring such that every non-zero element has inverse)

Consequences:

1) If F is algebraically closed, and R is an F -algebra, M is a simple R-module, then
EndR (M) ∼= F ,
(that is, every R-homomorphism is multiplication by an element of F .)

2) If R is a commutative algebra over an algebraically closed field F , and M is a
simple R-module, then dimF (M) = 1.



Proof of 1) and 2)

Proof 1). Let T ∈ HomR (M,M), then T is a linear map. Since F is algebraically
closed, T has an eigenvalue λ ∈ F . Then T − λidM ∈ HomR (M,M). Since there is
corresponding eigenvector m 6= 0 in M, (T − λidM )(m) = 0. So T − λidM is not an
isomorphism. By Schur’s Lemma T − λidM = 0, that is T = λidM .

Proof 2). Since R is commutative then for any r ∈ R, θr : M −→ M, given by
θr (m) = rm is an R-module homomorphism as θr (sm) = rsm = srm for any s ∈ R. By
(1) θr = λidM for some λ ∈ F . Let N be a 1-dimensional subspace of M, and r ∈ R.
Since θr = λidM , rn = λn ∈ N, hence N is R-module. Simce M is simple M = N is
1-dimensional.

Counter-example for 1) If F = R reals and M = C = R ⊕ Ri , φ : C −→ C φ(z) = iz is
R-linear, and φ2 = −idC but there is no r ∈ R with φ = r · idC because r2 6= −1 for all
r ∈ R.



Direct Sums, Indecomposability for modules
Let S and T have the same algebraic structure, both are groups, or both rings, both
are R-modules, =⇒ their direct sum S ⊕ T = {(s, t) | s ∈ S , t ∈ T} has the same
structure with coordinatewise operations.

Let M be R-module , M is called indecomposable if whenever M ∼= N ⊕ K with
submodules K ,N we have N or K is 0.

Simplicity and indecomposability is determined also by the structure of the ring
EndR (M):

M is simple ⇐⇒ f is isomorphism or f = 0 for all f ∈ EndR (M).

M is indecomposable ⇐⇒ f is isomorphism or f k = 0 for some k ≥ 1 (f is nilpotent)
for all f ∈ EndR (M).

Examples:

Zn is a Z-module for any n, when n = p is a prime Zp is simple

Zp ⊕ Zq
∼= Zpq for primes p 6= q but Zp ⊕ Zp 6∼= Zp2

Zp is a subgroup of Zp2 so Zp2 is not simple but indecomposable

K ⊕ H 6∼= Zp2 for any H, K .



Indecomposability and Projections
Let M be an R-module, f ∈ HomR (M,M) is called a projection if f 2 = f .

If f is a projection, then idM − f is also a projection;
(idM − f )2 = idM − 2f + f 2 = idM − f .

A projection gives a direct sum decomposition with submodules of M because;

idM = f + idM − f , and f (idM − f ) = f − f 2 = 0 implies

M = image(f )⊕ ker(f ).

In fact; if f1, . . . , fk ∈ HomR (M,M) with f 2
i = f , and fi fj = 0 for i 6= j ,

idM = f1 + · · ·+ fk and M ∼= f1(M)⊕ · · · ⊕ fk (M).

Examples : 1) The zero map f = 0 and f = idM are trivial projections

2) Let M = R⊕ R be the R-vector space of dimension 2, and f (a, b) = (a, 0), then

f (f (a, b)) = f (a, 0) = (a, 0) =⇒ f 2 = f .



Semisimple rings
A ring R is called semisimple if every R-module M can be written as
M ∼= M1 ⊕ · · · ⊕Mk where Mi is simple R-modules.

Example: Any field F = R is semisimple, every vectorspace M ∼= F k for some k.

Non-example : R = Z is not semisimple Zp2 is indecomposable but not isomorphic
to direct sum of simples.

So, if there are indecomposable R-modules =⇒ R is not semisimple

R is not semisimple =⇒ M ∼= M1 ⊕ · · · ⊕Mk where Mi is indecomposable

Observation: Let 0 6= v ∈ M, 0 6= Rm is a submodule of M .

M simple =⇒ M = Rm and R/AnnR (m) ∼= Rm as R-modules, and AnnR (m) is a
maximal left ideal

R is not semisimple if J(R) 6= 0 where J(R) = ∩{AnnR (M) : M simple}.



R = F, M is a vector space

M simple F -module =⇒ M ∼= F

M ∼= F m and N ∼= F n then HomF (M,N)↔ Matn×m(F )

f ∈ HomF (M,N), ⇐⇒ f (cv) = cf (v) and f (v + w) = f (v) + f (w)

f : M −→ N

M has a basis, say , v1, . . . , vm, every element of M is of the form c1v1 + · · ·+ c + mvm

N has a basis, say , u1, . . . , un, every element of N is of the form d1u1 + · · ·+ dnun

so knowing f means knowing f (vi ) = di1u1 + · · ·+ dinun, i = 1, . . . ,m

so f ↔ (dij ) =

 dij





Representation Theory

{abstract algebraic structures(groups, associativealgebras, posets) } =⇒

{concrete objects in linear algebra, matrices }

Example :

{finite groups } =⇒ {associate group elements with matrices }

Let G be group, a representation of G of dimension n over F is a group
homomorphism

θ : G −→ GLn(F ) so that

θ(g) is matrix A and Aorder(g) = I .



Representation Theory of Finite Groups

The group homomorphism

θ : G −→ GLn(F n) can be extended linearly to a ring homorphism

Θ : F [G ] −→ EndF (F n) ∼= Matn×n(F )

Hence F n is an F [G ]-module via Θ.

Representation theory of F [G ] becomes F [G ]-module theory.

Depending on the characteric of the field, F [G ] is semisimple or non-semisimple.

These two cases are totally different.

For instance, if G is abelian, non-cyclic p-group, all indecomposable (simple)
CG -modules are known, but if characteristic of F is p, classification for
indecomposables exists only for G ∼= Z2 × Z2.



Theorems on the number of simples,
indecomposables

– If A is a finite dimensional F -algebra, and F is algebraically closed, then there are
finitely many simple A-modules up to isomorphism. If their degrees are di , then
Σi d

2
i = dimF (A)− dimF J(A) where J(A) is the largest nilpotent left ideal in A.

– If A = F [G ] where G is a p-group and char(F ) = p, then dimF (A)− dimF J(A) = 1,
so that there is only one irreducible module which is 1-dimensional.

–(Higman) Let F be a field of characteristic p. There are finitely many
indecomposable F [G ]-modules if and only if a Sylow subgroup of G is cyclic .

– If G is cyclic p-group of order pn, F is a field of characteristic p, then there pn

non-isomorphic indecomposable F [G ]-modules.

– (Schur) If G is abelian and F is algebraically closed, M simple F [G ]-module, then
dimF (M) = 1 and Hom)R(M,M) ∼= F .



Observation

Note that (Σg∈G g)h = h(Σg∈G g) = Σg∈G g for any h ∈ G

then (Σg∈G g)F [G ] = (Σg∈G g)F ∼= F is a submodule of F [G ] fixed by G and

(Σg∈G g)(Σg∈G g) =|G |(Σg∈G g).

If |G | has an inverse in F , then rG = 1
|G |Σg∈G g is a projection in F [G ] because;

r2
G = ( 1

|G |Σg∈G g)( 1
|G |Σg∈G g) = ( 1

|G | )
2(Σg∈G g)(Σg∈G g) = ( 1

|G | )
2 |G |(Σg∈G g) = rG .

In particular, F [G ] ∼= rG F [G ]⊕ (1− rG )F [G ] so that F [G ] is not indecomposable.

If |G |= 0 in F , then (Σg∈G g) is a nilpotent element in F [G ], then F [G ] is not
semisimple.

|G | has an inverse in F ⇐⇒ char(F ) does not divide |G |



Maschke’s Theorem

Maschke’s Theorem Suppose char(F ) does not divide |G | and M be anf F [G ]-module.
If N is a submodule of M, then there is a submodule W such that M = N ⊕W .

Proof: Note that M is a vector space over F and F is semisimple, so there is a
subspace V of M such that M = N ⊕V . We want to obtain a submodule though. Let
prV : M −→ V be the projection onto V , prV (n, v) = v . Using prV define an
F [G ]-homomorphism f : M −→ M by f (m) = 1

|G |Σg∈G g−1prV (gm). This f is a

projection as well, f 2 = f , and f (M) = V , so that M = V ⊕ ker(f ).

By this theorem every F [G ]-module is a direct sum of irreducibles, that is, F [G ] is
semisimple.

If char(F ) = 0 =⇒ F [G ] is semisimple.

R[G ], C[G ] are semisimple.



Restricting M to a subgroup H, M↓H

Chouinard’s Theorem and Dade’s Lemma, modular case

Let M be an F [G ]-module and H ≤ Units(F [G ]) be a subgroup.

Then F [H] is a subalgebra of F [G ], and M is an F [H]-module denoted by M ↓H .

An elementary abelian p-group E of order pn is of the form E = Zp × · · · × Zp

(n-copies).

Chouinard’s Theorem* (1976) Let G be a finite p-group, an F [G ]-module M is free
if and only if M ↓E is free for every elementary abelian p-subgroup E of G .

*To avoid some definitions we state Chouinard’s theorem in a special case.

Dade’s Lemma ( 1978) An F [E ]-module M is free if and only if M ↓〈1+x〉 is free for

all x in J(E)\J(E)2.



PART 2

Examples of Representations of Cyclic Group

Let G = 〈g〉 ∼= Zk , and F be any field. An F [G ]-module/representation of dimension
n is given by a homomorphism φ : G −→ GLn(F ) = Aut(F n).

φ is determined by a matrix A = φ(g) with Ak = In, that is, M = F n

g : M −→ M is linear and [g ]B = A where B is a basis for G .

– M = F is trivial F [G ]-module, A = [c] with ck = 1 (F must have k-th root of 1.)

– M = F [G ] is the regular F [G ]-module.

– M = I is a left ideal of F [G ], is an F [G ]-module.



CZ5, semisimple case, char(C) = 0 6= 5
Suppose F = C, G = 〈g〉 ∼= Z5 and M is a simple C[G ]-module.

By Schur’s Lemma dimC(M) = 1 and [g ] = [ω], where ω5 = 1, so gm = ωm for all
m ∈ M.

There are 5 possibilities for ω, so there are five simple CG -modules all of dimension 1.

Problem: Write the regular module C[G ] as a sum of simple modules. Let A = [g ]B

where B = {1, g , . . . , gk−1} is a basis for C[G ]. Then A =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 and

the characteristic polynomial of A is
det(xI − A) = x5 − 1 = (x − ω1)(x − ω2)(x − ω3)(x − ω4)(x − 1) where ω5

i = 1.

There are 5 distinct roots, so A is diagonalizable. A is similar to

D =


ω1 0 0 0 0
0 ω2 0 0 0
0 0 ω3 0 0
0 0 0 ω4 0
0 0 0 0 1

 therefore

CZ5 = M1 ⊕ · · · ⊕M5 , such that Mi is simple and rmi = ωi mi for mi ∈ Mi .



FZ5, modular case, char(F) = 5
Let G = 〈g〉 ∼= Z5. Let M be a simple F [G ]-module. Assume F is algebraically closed.

By Schur’s Lemma dimF (M) = 1 and [g ] = [ω], with ω5 = 1. Since F is a field,
0 = ω5 − 1 = (ω − 1)5 mod (5) implies ω = 1 mod (5).
Therefore M = F and gm = m for all m ∈ M.
So there is only one simple F [G ]-module, M = F , it has trivial g -action.

Problem: Write the regular module FG as a sum of indecomposable modules.

A =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

. The characteristic polynomial of

A = det(xI − A) = x5 − 1 = (x − 1)5, then 1 is the only eigenvalue, it has multiplicity
5. However, since rank(A− I ) = rank(R) = 4, the eigenspace of 1 is 1-dimensional,
so that A is not diagonalizable;

A− I =


−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 ∼


0 0 0 0 0
1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

 = R .



Generalized Eigenvectors
Definition: A vector vm is called a generalized eigenvector of rank m of a matrix A
corresponding to the eigenvalue λ, if

(A− λI )mvm = 0, (A− λI )m−1vm 6= 0.

The set {vm, (A− λI )vm, (A− λI )2vm, (A− λI )3vm, . . . , (A− λI )m−1vm} is
linearly independent and

v1 = (A− λI )m−1vm, then (A− λI )v1 = 0, so Av1 = λv1

v2 = (A− λI )m−2vm, then v1 = (A− λI )v2, so Av2 = v1 + λv2

...

vm−1 = (A− λI )vm, then Avm = vm−1 + λvm.

The Jordan block of A corresponding to the eigenvalue λ written with respect to this
basis is the form
λ 0 0 0 0
1 λ 0 0 0
0 1 λ 0 0
0 0 1 λ 0
0 0 0 1 λ





For FZ5
Let N = A− I , let’s compute powers of N:

N =


−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 , N2 =


1 0 0 1 −2
−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 ,

N3 =


−1 0 1 −3 3
3 −1 0 1 −3
−3 3 −1 0 1
1 −3 3 −1 0
0 1 −3 3 −1

 , N4 =


1 1 −4 6 −4
−4 1 1 −4 6
6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

 ,

N5 =


0 −5 10 −10 5
5 0 −5 10 −10
−10 5 0 −5 10
10 −10 5 0 −5
−5 10 −10 5 0

 , N6 =


−5 15 −20 15 −5
−5 −5 15 −20 15
15 −5 −5 15 −20
−20 15 −5 −5 15
15 −20 15 −5 −5

,



FZ5, modular case char(F) = 5
In our example above, (A− I )5 = A5 − I 5 = I − I = 0, but do not know (A− I )4 6= 0.

−1 = 4 mod (5), −2 = 3 mod (5), etc.

A− I =


4 0 0 0 1
1 4 0 0 0
0 1 4 0 0
0 0 1 4 0
0 0 0 1 4

 , (A− I )2 =


1 0 0 1 3
3 1 0 0 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1

 ,

(A− I )3 =


4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0
0 1 2 3 4

 , (A− I )4 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 6= 0,

(A− I )5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 = 0, (A− I )6 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 = 0,



FZ5, modular case , char(F) = 5

In our example above, (A− I )5 = A5 − I 5 = I − I = 0, and (A− I )4 6= 0.

Since (A− I )4 6= 0, there is a non-zero vector v5 with (A− I )4v5 6= 0. Let

v1 = (A− I )4v5,
v2 = (A− I )3v5,
v3 = (A− I )2v5,
v4 = (A− I )v5.

Then (A− I )v1 = 0, so that Av1 = v1, v1 is an eigenvector and v2, v3, v4, v5 are
generalized eigenvectors for A corresponding to 1.

The set B = {v5, v4, v3, v2, v1} is linearly independent and
v4 = (A− I )v5 = Av5 − v5 so that Av5 = v4 + v5

v3 = (A− I )2v5 = (A− I )v4 = Av4 − v4 so that Av4 = v3 + v4

v2 = (A− I )3v5 = (A− I )v3 = Av3 − v3 so that Av3 = v2 + v3

v1 = (A− I )4v5 = (A− I )v2 = Av2 − v2 so that Av2 = v1 + v2

Rewriting the matrix A using the basis B we obtain the Jordan form J of A,

J =


1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 ∼ A. Therefore FZ5 is indecomposable.



FZ5, modular case, shifted basis

We obtained the matrix A of the generator g using the basis {1, g , g2, . . . , g4} for
FZ5.

If we used the basis {1, g − 1, (g − 1)2, . . . , (g − 1)4} for FZ5, then

[g − 1] =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 and adding I gives [g ] =


1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


which is already in the Jordan form.

A nilpotent matrix with 5th power zero can be the matrix of [g − 1] action on an
FZ5-module M.

M is indecomposable FZ5-module if there is only one Jordan block in the Jordan form
of [g − 1] . All other possible Jordan blocks are

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

,

0 0 0
1 0 0
0 1 0

,

[
0 0
1 0

]
,
[
0
]
, which correspond to indecomposable

modules V4, V3, V2, V1 respectively, dim(Vi ) = i . Vi ’s are submodules (ideals of )
F [G ]. Note also that F [G ] is indecomposable and contains all the indecomposables.



Modular Case, Indecomposables for a Cyclic p-group,
Let Zpt = 〈g〉. All the indecomposables are submodules (ideals) of F [G ].

There is a unique maximal ideal J(F [G ]) of dimension pt − 1, with (J(F [G ]))i of
dimension pt − i .

Using the shifted basis {(g − 1)pt−1, (g − 1)pt−2, . . . , g − 1, 1} for F [G ] we can write
explicitly (J(F [G ]))i .

Let Vi = (J(F [G ]))i = Span{ (g − 1)pt−1, . . . , (g − 1)pt−i } for i = 1, 2, . . . , pt−1.

The action of g − 1 on Vi is represented by the i × i nilpotent Jordan matrix [i ].

V1 = k,V2, . . .Vpt−1, . . .Vpt = F [〈g〉]} is the set of all indecomposable
F [〈g〉]-modules, hence a F [〈g〉]-module M of dimension d is of the form

M ∼= V b1
1 ⊕ · · · ⊕ V

bpt

pt where Σpt

i=1ibi = d .

M is completely determined by b = (b1, . . . , bpt ) where bi -many Jordan blocks [i ].

b is called the pt -Jordan type of M also of X = [g − 1].

It is easy to compute bi , namely, bi = X i−1 − 2X i + X i+1.



Key observation

The decomposition of M in terms of indecomposable k[Zpt ]-modules completely
determines the decomposition of the restriction M↓Zps of M for the subgroups

Zps = 〈gpt−s 〉 contained in Zpt = 〈g〉 for s ≤ t.

Hence, if b is pt -Jordan type of M as a k[〈g〉]-module and a is the ps -Jordan type of

M as a k[〈gpt−s 〉]-module, then

ai = ps bips + Σps−1
j=1 j

[
b(i−1)ps +j + b(i+1)ps−j

]
.

In this case, we say a is a pt−s -restricted ps -Jordan type and write a=b↓t−s . The

coefficients of bj ’s appearing in ai form a nice pattern. For p = 5, t = 2, s = 1;

a1 = b1 + 2b2 + 3b3 + 4b4 + 5b5 + 4b6 + 3b7 + 2b8 + b9,

a2 = b6 + 2b7 + 3b8 + 4b9 + 5b10 + 4b11 + 3b12 + 2b13 + b14,

a3 = b11 + 2b12 + 3b13 + 4b14 + 5b15 + 4b16 + 3b17 + 2b18 + b19,

a4 = b16 + 2b17 + 3b18 + 4b19 + 5b20 + 4b21 + 3b22 + 2b23 + b24,

a5 = b21 + 2b22 + 3b23 + 4b24 + 5b25.



PART 3
Representations of Zpt × Zps , modular case

Let G = 〈g , h : gpt
= 1 = hps

, gh = hg〉 ∼= Zpt × Zps , and k be of characteristic p.

Since Zpt × Zps ≥ Zp × Zp , Higman’s Theorem implies that there are infinitely many
indecomposable k[G ]-modules.

There is no classification for indecomposable modules over k[Zp × Zp ] except for
p = 2.

A k[G ]-module/representation of dimension d is given by a homomorphism
φ : G −→ GLd (k) = Aut(kd ).

φ is determined by φ(g) and φ(h).

Let A = φ(g), B = φ(h).

Then Apt
= I , Bps

= I and AB = BA.

The characterstic of k is p, then (A− I )pt
= Apt − I = I − I = 0 similarly for B.

To make computations easier, we work with X = A− I , and Y = B − I corresponding
to g − 1 and h − 1 respectively.



Visualizing modules for Zpt × Zps , modular case

A way of visualizing an k[Zpt×Zps ]-module M:

southwest arrow denotes multiplication by g − 1,
and southeast arrow denotes multiplication by h− 1, g and h are the group generators.

For example let G ∼= Z4 × Z4,
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M ↓〈g〉 has 4-Jordan type (2, 4, 0, 0) (left fig.)

M ↓〈h〉 has 4-Jordan type (0, 1, 0, 2) (right fig.)
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Constant Jordan Type Modules

Let E be an elementary abelian group of order pr with generators e1, . . . er .

Let α = (α1, . . . , αr ) ∈ k r not all αi = 0, define xα = α1(e1 − 1) + . . .+ αr (er − 1).

In characteristic p,

xp
α = αp

1(e1 − 1)p + . . .+ αp
r (er − 1)p = 0 because (ei − 1)p = ep

i − 1 = 1− 1 = 0.

xα ∈ J(k[E ]), Zp
∼= 〈1 + xα〉 ≤ Units(k[E ]).

An k[E ]-module is said to be of constant Jordan type if M ↓〈1+xα〉 has the same
decomposition for all α in k r\0.

That is, the Jordan canonical form of the matrix of xα is the same for all α in k r\0.

These modules are introduced by Carlson-Friedlander-Pevtsova in 2008

Let A be an abelian p-group, that is, A ∼= Zpt1 × . . .× Zptm .

I generalized the above definition to constant pt -Jordan type for k[A]-modules in 2011.

A k[A]-module is said to be of constant pt -Jordan type if the pt -Jordan type of M is
the same for all subgroups Zpt of the unit group of k[A] for which k[A] is a free
k[Zpt ]-module.



Two examples of constant Jordan type modules Z5×Z5

The k[Z5×Z5]-modules M and M′, given in Figure 5 and Figure 6 respectively, both
are constant Jordan type modules.

The Jordan types of M and M′ are

(1, 1, 3, 0, 0) and (1, 2, 1, 1, 0), respectively.
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Conjectures by Suslin and Rickard on Jordan types

There are more conjectures than results on Jordan types of k[E ]-modules of constant
Jordan type as it is a difficult problem even for E = Z3 × Z3.

Suslin’s Conjecture. If M is a k[Zp × Zp ]-module of constant Jordan type having no
Jordan blocks of sizes i − 1, and i + 1, then there is no Jordan block of size i , for
2 < i < p, and p > 3.

Rickard’s Conjecture. If M is a k[E ]-module of constant Jordan type having no
Jordan block of size i then the total number of Jordan blocks of size at least i is
divisible by p.

Benson verified Rickard’s conjecture for the special case i = 1 .



Key observation

The decomposition of M in terms of indecomposable k[Zpt ]-modules completely
determines the decomposition of the restriction M↓Zps of M.

For instance , Z5
∼= 〈g5〉 ≤ 〈g〉 ∼= Z25 ,

if b is 52-Jordan type of M as a k[〈g〉]-module and

a is the 5-Jordan type of M ↓〈g5〉.

ai = 5bi5 + Σ4
j=1j

[
b(i−1)5+j + b(i+1)5−j

]
.

Recall that the coefficients of bj ’s appearing in ai form a nice pattern. ;

a1 = b1 + 2b2 + 3b3 + 4b4 + 5b5 + 4b6 + 3b7 + 2b8 + b9,

a2 = b6 + 2b7 + 3b8 + 4b9 + 5b10 + 4b11 + 3b12 + 2b13 + b14,

a3 = b11 + 2b12 + 3b13 + 4b14 + 5b15 + 4b16 + 3b17 + 2b18 + b19,

a4 = b16 + 2b17 + 3b18 + 4b19 + 5b20 + 4b21 + 3b22 + 2b23 + b24,

a5 = b21 + 2b22 + 3b23 + 4b24 + 5b25.



My conjecture generalizing Suslin and Rickard’s

Conjecture B. Suppose that M is a k[A]-module of constant pt -Jordan type a.

If ai = al = 0, then ps divides the sum Σl
j=i aj , for 1 ≤ i < l ≤ pt .

When A = E , this is Rickard’s Conjecture and Modified Suslin’s Conjecture.

Conjecture B is true for restricted k[A]-modules by my Theorem A (2014).

Theorem A. Suppose that A is an abelian p-group, M is a ps -restricted k[A]-module,
and a is the pt -Jordan type of M at a ps -restricted pt -point x of A with p > 3. If
ai = al = 0, then ps divides the sum Σl

j=i aj , for 1 ≤ i < l ≤ pt .



Restricted Modules

If G is an abelian p-group of order divisible by pt and A is a proper subgroup of index

at most pt−s for s ≤ t, then 〈gpt−s 〉 ∼= Zps is a subgroup of A for g ∈ G of order pt .

Hence there will be pt−s -restricted ps -Jordan types. This motivated the definition of
restricted modules.

A k[A]-module M is called a pt−s -restricted module if there is such a G and a
k[G ]-module N isomorphic to M as a k[A]-module.

So, a k[A]-module M is a pt−s -restricted module of constant if M is restricted
module and it is of constant Jordan type.



Example of a restricted module for Z2×Z4

Figure 5 represents a 10-dimensional k[Z2×Z4]-module. Its restriction to Z2×Z2 is a
restricted k[Z2×Z2] module is a direct sum the modules in Figure 2 and Figure 3.
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Only odd/only even Jordan blocks case by Benson

Theorem (Benson, 2010). There cannot be a k[E ]-module of constant Jordan type
a=(0, a2, . . . , ap−2, 0, ∗) where ai = 0 for all i ∈ {2, . . . , p − 2} except for one i for
which ai = 1.

Theorem (Benson, 2011) Suppose that a k[E ]-module M has constant Jordan type
with only distinct odd sizes or l only of distinct even sizes. Then the Jordan type of M
is of the form a=(1, 0, . . . , 0, ∗) or a=(0, . . . , 0, 1, ∗), or Σp

i=1ai ≥ 4.

Theorem (Benson, 2013) Suppose that a k[E ]-module M has constant Jordan type
(a1, . . . , at , 0, . . . , 0, ∗) with Σt

i ai ≤ min(r − 1, p − 2), then Jordan type of M is of the
form a=(1, 1, 1, 1, at = 1, 0, . . . , 0, ∗) where r is the E is of rank r .

Corollary. Suppose that a k[E ]-module M has constant Jordan type and E is of rank
r , p > r , with Jordan type (a1, 1, 0 . . . , 0, ∗), then then a1 ≥ r − 2.



My only odd/only even Jordan bloks results and a
conjecture implied by it

Theorem C. Suppose that M is a restricted k[A]-module of constant pt -Jordan type
having only odd size or of only even size.
Then the Jordan type of M is of the form

(ps t1 + r , 0, ps t3, 0, ps t5, 0, . . . , 0, ps tpt ) for some integer r ≥ 0 or
(0, ps t2, 0, ps t4, 0, . . . , 0, a, ∗) for integers ti , a, ∗ ≥ 0 with ps | a + ∗.

Theorem D. Suppose that M is a restricted k[A]-module of constant pt -Jordan type.
Then Jordan type is of the form (a, b, 0, . . .), then a ≥ p − b.
In particular, if p − 1 ≥ r − s, then a ≥ r − s for s ≥ r ;
if b 6= 0, then a 6= 0.

By removing the hypothesis “restricted” from our theorems we can state many
conjectures, such an example is in the next page.



A conjecture

Conjecture E. Suppose that M is a k[A]-module of constant pt -Jordan type with only
odd size or of only even sizes.
Then the Jordan type of M is of the form

(ps t1 + r , 0, ps t3, 0, ps t5, 0, . . . , 0, ps tpt ) for some integer r ≥ 0 or
(0, ps t2, 0, ps t4, 0, . . . , 0, a, ∗) for integers ti , a, ∗ ≥ 0 with ps | a + ∗.

Conjecture E is true for restricted k[A]-modules of constant pt -Jordan type.
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